Diskussion zum Artikel "Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)"

MetaQuotes  

Neuer Artikel Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit) :

Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.

Wir haben das Modell trainiert und den EA mit historischen EURUSD H1-Daten für März 2023 getestet. Während des Lernprozesses zeigte der EA während der Testphase Gewinne. Der Gewinn wurde jedoch erzielt, weil der Umfang der durchschnittlichen Ergebnisse der Positionen mit Gewinn größer war als der mit Verlust. Die Anzahl der Gewinner und Verlierer war jedoch ungefähr gleich. Infolgedessen lag der Gewinnfaktor (profit factor) bei 1,12 und der Erholungsfaktor (recovery factor) bei 1,01.

Test-Diagramm

Tabelle der Prüfergebnisse


Autor: Dmitriy Gizlyk

Grund der Beschwerde: