Pagaremos US$ 200
por cada artigo que você escreva!
por cada artigo que você escreva!
Baixe o MetaTrader 5 com novos recursos de negociação automatizada
Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)
Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
Integrando modelos de ML ao Testador de Estratégias (Conclusão): Implementação de um Modelo de Regressão para Previsão de Preço
Este artigo descreve a implementação de um modelo de regressão de árvores de decisão para prever preços de ativos financeiros. Foram realizadas etapas de preparação dos dados, treinamento e avaliação do modelo, com ajustes e otimizações. No entanto, é importante destacar que o modelo é apenas um estudo e não deve ser usado em negociações reais.
Previsão usando modelos ARIMA em MQL5
Neste artigo, continuamos a desenvolver a classe CArima para construir modelos ARIMA adicionando métodos de previsão intuitivos.
Como se tornar um provedor de sinais bem-sucedido na MQL5.com
O principal objetivo deste artigo é fornecer a você uma maneira simples e passo a passo de se tornar o melhor provedor de sinais na MQL5.com. A partir do meu conhecimento e experiência, explicarei o que é necessário para se tornar um provedor de sinais bem-sucedido, inclusive como encontrar, testar e otimizar uma boa estratégia. Além disso, darei dicas sobre como publicar seu sinal, escrever uma descrição convincente e promover e gerenciar de forma eficaz.
Teoria das Categorias em MQL5 (Parte 10): Grupos monoides
Esse artigo é uma continuação da série sobre como implementar a teoria das categorias em MQL5. Nele, consideramos os grupos monoides como um meio de normalizar os conjuntos monoides e permitir uma comparação mais precisa em um espectro mais amplo de conjuntos monoides e tipos de dados.
Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (I)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos eventos do gráfico e saiba como projetar e implementar uma GUI móvel simples e múltipla em um único gráfico. O artigo também aborda a adição de elementos à GUI, aumentando sua funcionalidade e apelo estético.
Teoria das Categorias (Parte 9): Ações dos monoides
Esse artigo é a continuação da série sobre a implementação da teoria das categorias em MQL5. Nele são discutidas as ações de monoides como um meio de transformar os monoides descritos no artigo anterior para aumentar suas aplicações.
Desenvolvendo um sistema de Replay (Parte 26): Projeto Expert Advisor — Classe C_Terminal
Talvez já podemos começar a desenvolver um Expert Advisor a ser utilizado no replay / simulação. Mas não iremos criar qualquer coisa, este precisará ser algo um pouco mais bem elaborado. Mas não nos deixemos nos levar pelo grau de dificuldade neste primeiro momento. Temos de começar a fazer as coisas partindo de algum ponto. Caso contrário apenas iremos nos conformar, imaginando o qual difícil o desafio é, sem ao menos tentarmos de fato superar este obstáculo. Vida de programador de fato é isto: Encontrar um obstáculo e tentar superar ele, via estudo, testes e bastante pesquisa.
Representações no domínio da frequência de séries temporais: O espectro de potência
Neste artigo, analisaremos os métodos relacionados à análise de séries temporais no domínio da frequência. Ele também se concentrará na utilidade do estudo de funções espectrais de séries temporais na criação de modelos preditivos. Além disso, discutimos algumas perspectivas promissoras para a análise de séries temporais no domínio da frequência usando a transformada discreta de Fourier (DFT).
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 25): Preparação para a próxima etapa
Aqui neste artigo iremos finalizar a primeira etapa do desenvolvimento do sistema de replay / simulador. Ao finalizar esta etapa, estou dizendo a você, caro leitor, que o sistema já estará em um estágio avançado o suficiente para que novas funcionalidades possam de fato serem implementadas. Isto a fim de tornar o sistema ainda mais elaborado e mais útil para efetuar estudos e desenvolver conceitos de analise de mercado.
Redes neurais de maneira fácil (Parte 43): Dominando habilidades sem função de recompensa
O problema com o aprendizado por reforço é a necessidade de definir uma função de recompensa, que pode ser complexa ou difícil de formular, porém abordagens baseadas no tipo de ação e na exploração do ambiente que permitem que as habilidades sejam aprendidas sem uma função de recompensa explícita estão sendo exploradas para resolver esse problema.
Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução
A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)
Aqui estamos retirando o bloqueio de simulação baseada na plotagem LAST, e adicionando um ponto de entrada para este tipo de simulação. Agora prestem atenção ao fato de que todo o funcionamento, irá se basear no sistema do forex. Sendo que a única diferença, aqui nesta rotina, é o fato de que estaremos separando uma simulação BID, de uma LAST. Mas a questão de randomização do tempo e a sua correção para ser utilizado pela classe C_Replay, é a mesma em ambos modos de simulação. Isto é uma coisa boa, já que se modificarmos um dos modos, o outro irá se beneficiar, pelo menos no que rege a parte do tempo entre os tickets
Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos
Este artigo descreve modelos hierárquicos de aprendizado que propõem uma abordagem eficaz para resolver tarefas complexas de aprendizado de máquina. Os modelos hierárquicos consistem em vários níveis, cada um responsável por aspectos diferentes da tarefa.
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados
Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.
Algoritmo de recompra: Simulação de negociação em várias moedas
Neste artigo, criaremos um modelo matemático para simular a precificação em várias moedas e concluiremos o estudo, que comecei no artigo anterior, sobre o princípio de diversificação como parte da busca por mecanismos para aumentar a eficiência da negociação.
Redes neurais de maneira fácil (Parte 39): Go-Explore - uma abordagem diferente para exploração
Continuamos com o tema da exploração do ambiente no aprendizado por reforço. Neste artigo, abordaremos mais um algoritmo, o Go-Explore, que permite explorar eficazmente o ambiente durante a fase de treinamento do modelo.
Teoria das Categorias em MQL5 (Parte 8): Monoides
Esse artigo continua a série sobre a implementação da teoria da categoria em MQL5. Aqui, apresentamos os monoides como um domínio (conjunto) que distingue a teoria da categoria de outros métodos de classificação de dados ao incorporar regras e um elemento de equivalência.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier
A transformada de Fourier é um método de decompor uma onda de pontos de dados em possíveis partes constituintes que foi introduzida por Joseph Fourier. Esse recurso pode ser útil para os traders, e é isso que abordaremos neste artigo.
Implementando um algoritmo de treinamento ARIMA em MQL5
Neste artigo, implementaremos um algoritmo que aplica o modelo integrado de autorregressão com média móvel (modelo Box-Jenkins) usando o método de minimização de função de Powell. Box e Jenkins afirmaram que a maioria das séries temporais pode ser modelada usando uma ou ambas das duas estruturas.
Gestão de dinheiro de negociação
Neste artigo, veremos várias novas maneiras de criar sistemas de gerenciamento de dinheiro e identificar seus principais recursos. Hoje, existem algumas estratégias de gerenciamento de dinheiro para todos os gostos. Tentaremos considerar várias maneiras de administrar o dinheiro com base em diferentes modelos matemáticos de crescimento.
Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente
Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.
Teoria das Categorias em MQL5 (Parte 7): Domínios Multiconjuntos, Relativos e Indexados.
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Algoritmo de recompra: modelo matemático para aumentar a eficiência
Neste artigo, usaremos o algoritmo de recompra como um guia para um entendimento mais profundo da eficiência dos sistemas de negociação e começaremos a trabalhar com os princípios gerais de aumentar a eficiência de negociação usando matemática e lógica, bem como aplicar os métodos mais inovadores para aumentar a eficiência no contexto de usar qualquer sistema de negociação.
Negociação automatizada em grade usando ordens pendentes de stop na Bolsa de Moscou (MOEX)
Uso da abordagem de negociação em grade com ordens pendentes de stop em um Expert Advisor usando a linguagem de estratégias de negociação MQL5 para o MetaTrader 5 na Bolsa de Valores de Moscou (MOEX). Ao negociar no mercado, uma das estratégias mais simples é uma grade de ordens projetada para "capturar" o preço de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 23): FOREX (IV)
A criação, agora, é efetuada no mesmo ponto que fazemos a conversão dos tickets em barras. Então se algo vim a dar errado durante a conversão, iremos logo notar o erro. Pois o mesmo código que lança as barras de 1 minuto no gráfico, quando fazemos um avanço rápido, também é utilizando pelo sistema de posicionamento, e também é usado para lançar as barras durante o avanço normal. Ou seja, agora o código responsável por tal tarefa, não esta mais sendo duplicado em ponto algum. Desta forma, já temos um sistema bem mais adequado, tanto para manutenção, quanto para melhorias.
Matrizes e vetores em MQL5: funções de ativação
Neste artigo, descrevemos apenas um aspecto do aprendizado de máquina, em particular as funções de ativação. Em redes neurais artificiais, a função de ativação de neurônio calcula o valor de um sinal de saída com base nos valores de um sinal de entrada ou de um conjunto de sinais de entrada. Vamos mergulhar nos detalhes internos do processo.
Encapsulando modelos ONNX em classes
A programação orientada a objetos permite criar códigos mais compactos, fáceis de ler e modificar. Apresentamos um exemplo para três modelos ONNX.
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados
Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)
Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 22): FOREX (III)
Para quem ainda não entendeu a diferença entre o mercado de bolsa e o de forex, apesar de este já ser o terceiro artigo em que estou abordando isto. Devo deixar claro, que a grande diferença, é o fato de que no forex não existe, ou melhor, não nos é informado algumas coisas a respeito do que aconteceu de fato na negociação.
Aprenda algumas lições com as Empresas de Prop Trading (Parte 1) — Uma introdução
Neste artigo introdutório, discutirei algumas lições que podem ser aprendidas com os testes que as empresas de prop trading empregam. Isso é especialmente relevante para iniciantes e para aqueles que estão lutando para encontrar seu lugar no mundo do trading. O próximo artigo abordará a implementação do código.
Experimentos com redes neurais (Parte 5): Normalização de parâmetros de entrada para alimentar a rede neural
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Multibot no MetaTrader: lançando vários robôs a partir de um único gráfico
Neste artigo, veremos um modelo simples para a criação de um robô universal no MetaTrader que pode ser usado em vários gráficos, mas que é fixado em apenas um gráfico, sem a necessidade de configurar cada instância do robô em cada gráfico individual.
Como conectar o MetaTrader 5 ao PostgreSQL
Esse artigo descreve quatro métodos de conexão do código MQL5 ao banco de dados Postgres e apresenta um guia passo a passo para configurar um ambiente de desenvolvimento para um deles, a API REST, por meio do Windows Subsystem for Linux (WSL). Além disso, mostra-se um aplicativo de demonstração para a API com o código MQL5 necessário para inserir dados e consultar as respectivas tabelas, bem como um EA de demonstração para usar esses dados.
Um exemplo de como montar modelos ONNX em MQL5
O ONNX (Open Neural Network Exchange) é um padrão aberto para a representação de modelos de redes neurais. Neste artigo, mostraremos a possibilidade de usar dois modelos ONNX simultaneamente em um Expert Advisor.
Desenvolvendo um sistema de Replay - Simulação de mercado ( Parte 21): FOREX (II)
Vamos continuar a montagem do sistema para cobrir o mercado de FOREX. Então para resolver este problema, precisaríamos primeiramente, declarar o carregamento dos tickets, antes de fazer o carregamento das barras previas. Isto resolve o problema, mas ao mesmo tempo força o usuário, a um tipo de modelagem do arquivo de configuração, que ao meu ver não faz muito sentido. O motivo é que, ao desenvolver a programação, responsável por analisar e executar o que esta no arquivo de configuração, podemos permitir ao usuário, declarar as coisas em qualquer ordem.
Estratégia de negociação no indicador de reconhecimento apurado de velas Doji
O indicador baseado em metabarras detecta mais velas do que o clássico baseado em barras únicas. Vamos ver se ele oferece benefícios reais na negociação automatizada.
Redes neurais de maneira fácil (Parte 37): atenção esparsa
No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.